Selective brain cooling in modern humans

The human brain is the most expensive and costly organ in terms of energetic resources and management. However, the current understanding of its sophisticated thermal control mechanisms remains insufficient. Wang et al., 2016, have reviewed the most recent studies on brain thermoregulation and examined the anatomical and physiological elements associated with selective brain cooling. Modern humans have a brain that is approximately three times larger than a primate with a similar body size, which uses 20%– 25% of the total body energy compared with a maximum of 10% in other primates and 5% in other mammals. The evolution of a large and expensive brain in modern humans effectively influences critical factors such as temperature, and functional limits can affect cerebral complexity and neural processes. Brain thermoregulation depends on many anatomical components and physiological processes, and it is sensitive to various behavioral and pathological factors, which have specific relevance for clinical applications and human evolution. The anatomical structures protecting the brain, such as the human calvaria, the scalp, and the endocranial vascular system, act as a thermal interface, which collectively maintains and shield the brain from heat challenges, and preserves a stable equilibrium between heat production and dissipation. Future advances in biomedical imaging techniques would allow a better understanding of the physiological and anatomical responses related to the cerebral heat management and brain temperature in modern humans.

Gizéh Rangel de Lázaro

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: