Category Archives: Skull

Eye-brain spatial relationship

We have just published a new study on the spatial relationship between visual and endocranial structures in adult modern humans, chimpanzees, and fossil humans. The survey was conducted in collaboration with Michael Masters from Montana Tech (USA), who previously hypothesized that, in modern humans, the positioning of the orbits below the frontal lobes coupled with a reduced face could result in spatial conflict among ocular, cerebral, and craniofacial structures. This could lead to vision problems, such as myopia. In addition, another study evidenced that eye and orbit dimensions have a stronger correlation with the frontal lobes, rather than with the occipital lobes, indicating that the ocular structures can be more constrained by spatial (physical) than by functional (vision) relationships. In this study we used geometric morphometrics to investigate the longitudinal (antero-posterior) spatial relationships between orbito-ocular and endocranial structures. First, we addressed the the position of the eye relatively to the frontal and temporal cortex, on a sample of 63 modern humans’ MRIs. Second, we addressed the spatial relationship between orbital and endocranial structures on a CT sample comprising 30 modern humans, 3 chimpanzees, and 3 fossil humans (Bodo, Broken Hill 1, Gibraltar 1).

The results of the MRI analysis show that in adult modern humans the main pattern of shape variation deals with the antero-posterior position of the eye relative to the temporal lobes. Individuals which eyes are closer to the temporal lobes exhibit rounder frontal outline and antero-posterior shorter eyes, indicating a possible physical constraint associated with the spatial contiguity between the eye and the middle cranial fossa. A second pattern describes the supero-inferior position of the eye, relatively to the frontal lobe. Also in this case, proximity is apparently associated with slight changes in eye form. Individuals with larger volumes of the frontal and temporal lobes tend to have eyes located more posteriorly, closer to the temporal lobe, although with no apparent change in the shape of the eye. These results partially support Master’s hypothesis, suggesting reciprocal spatial patterns influencing brain and eye form.

When analyzing orbits and braincase through CT data, the main intra-specific variation among modern humans concerns the orientation of the orbit, not the position. Nonetheless, analyzing humans, apes, and fossil hominids all together, the main differences deal with the distance between orbits and braincase: they are separated in chimps, overlapped in modern humans, and in intermediate position in fossils. In this case, fossils belong to the hypodigm of Homo heidelbergensis. Modern humans are characterized by larger temporal lobes when compared with other living primates, and longer middle cranial fossa. The proximity with the eyeballs due to face reduction can stress further a morphogenetic spatial conflict between orbits and brain. Next step: 3D analyses, ontogenetic series, and vision impairment.

Sofia Pedro

Advertisements

Hominin biomechanics

 

Hominin biomechanics

Virtual anatomy and inner structural morphology,
from head to toe
A tribute to Laurent Puymerail

Comptes Rendus Palevol 16 (2017)

[ScienceDirect]

 


Top hat

[Gemma Suárez]


Modelling Skull Growth

The Finite Element (FE) method has increasing application to biological sciences but frequently lacks proper validation by robust experimental research. One aspect of particular biological and bio-mechanical importance is growth of the human infant skull. Specific local changes during growth of the infant skull are largely unknown with only the general rate of cranial increase from 25% at birth to 65% of the adult size by age six. The potential adverse effects of any abnormalities in infant skull growth is difficult to approximate if the isolated local areas likely to be most impacted are not accurately known. If properly validated, computer simulated modelling such as Finite Element methods would be invaluable in surgical settings. A new comprehensive study focusing on human infant cranial vault expansion utilized robust laboratory experiments of a fetal skull (ex-vivo), replicate physical model (in-vitro), several FE models (in-silico) and a sample of micro-CT infant skulls (in-vivo). The first validation tested a physical model against a FE model (A) in which the cranial base and facial bones formed a single structure with only the cranial vault comprising individual bones. The FE model (A) over-predicted size changes to the anterior of the skull especially near the orbits and mediolateral expansion of the skull. The second validation tested in-vivo models against an FE model (B) in which the only the facial bones formed a single structure while the vault and cranial base comprised individual bones. All analyses associated discrepancy between the FE model (B) and the in-vivo models with age-related changes. As age increased, the regions under-predicted by the FE model (B) were first the orbits and upper vault before tending toward the cranial base, while the regions over-predicted by the FE model (B) were focused on the anterior and posterior fontanelles.

This validation study showed that FE modelling could be used to approximate growth in the human skull with only small discrepancies. The differences between the predicted ranges of growth (FE models) and the observed growth (in-vivo models) was explained by assumption of isotropic brain expansion which simplified the highly complex and uneven growth rates in real brain expansion. The artificial construction of a single structure representing the facial bones added further constraints. The development of more advanced simulations could narrow the discrepancy between expected and observed growth patterns allowing a more accurate representation of human skull growth.

Alannah Pearson

 


Polyphemus

Amazing document!
A cyclop’s skull …

(a new species? cyclopism? what about hybrids!?)

 

 


Selective brain cooling in modern humans

The human brain is the most expensive and costly organ in terms of energetic resources and management. However, the current understanding of its sophisticated thermal control mechanisms remains insufficient. Wang et al., 2016, have reviewed the most recent studies on brain thermoregulation and examined the anatomical and physiological elements associated with selective brain cooling. Modern humans have a brain that is approximately three times larger than a primate with a similar body size, which uses 20%– 25% of the total body energy compared with a maximum of 10% in other primates and 5% in other mammals. The evolution of a large and expensive brain in modern humans effectively influences critical factors such as temperature, and functional limits can affect cerebral complexity and neural processes. Brain thermoregulation depends on many anatomical components and physiological processes, and it is sensitive to various behavioral and pathological factors, which have specific relevance for clinical applications and human evolution. The anatomical structures protecting the brain, such as the human calvaria, the scalp, and the endocranial vascular system, act as a thermal interface, which collectively maintains and shield the brain from heat challenges, and preserves a stable equilibrium between heat production and dissipation. Future advances in biomedical imaging techniques would allow a better understanding of the physiological and anatomical responses related to the cerebral heat management and brain temperature in modern humans.

Gizéh Rangel de Lázaro

 


Base and vault

A study on covariation between parietal bone and endocranial base …

[post]    [paper]


Craniovascular traits

This month we have published a review on craniovascular traits and anthropology, freely available to download from the Journal of Anthropological Sciences. The article describes many vascular traits that can be analyzed on skulls, through the traces they leave on the bone surface or within the bone itself. The traces of the middle meningeal vessels, the traces of the venous sinuses, the diploic channels, and the endocranial foramina, can provide information on the vascular networks and, indirectly, on the physiological processes associated with their growth and development. The functional information available from these imprints is partial and incomplete, but it is the only one we have on blood flow when dealing with fossils, archaeological remains, or forensic cases. Methods are an issue, because of the difficulties with small samples, scoring procedure, statistics of ordinal and nominal variables, and with an intrinsic limitation in current anatomy: we still ignore the variations and processes behind many macroanatomical features, even in our own species. Previous articles on this topic deal with middle meningeal artery, vessels and thermoregulation, diploic channels, and parietal bone vascularization. Most of these papers are part of a project funded by the Wenner-Gren Foundation through an International Collaborative Research Grant, entitled “Cranial anatomy, anthropology, and the vascular system”. This beautiful drawing of a sectioned skull is by Eduardo Saiz.


Seasonal skull reduction

dechmann-et-al-2017Braincase shrinkage during winter was firstly described in shrews by Dehnel in 1949, and is known as the Dehnel’s Phenomenon. Recently, Dechmann et al. investigated the seasonal size variation in the skulls of shrews (Sorex araneus) and least weasels (Mustela nivalis). They measured skull length and braincase depth on specimens previously collected from a Polish National Park, sampling all seasons. Both species showed an initial juvenile growth until the first winter, followed by shrinkage until spring in the adults, and a subsequent re-grow on the second summer, though never reaching the initial size. Heat maps built from high resolution CT scans demonstrated that size changes also involved changes in shape and in bone thickness, with the thinnest skulls coinciding with the smallest braincase size. Interestingly, these patterns differed between sexes, especially in weasels as only males were observed to re-grow. Despite phylogenetically distant, both species have similar life histories, having short life spans and high metabolisms, and inhabiting an environment with seasonal fluctuation of resources availability. Winter shrinkage would reduce energetic requirements and prepare individuals for the harder conditions, and re-growth during the resources-abundant season would prepare the males for reproduction while females would allocate the energy into caring for the offspring.  The authors conclude these seasonal reversible size changes are genetically fixed and exclusive of animals with such life histories, as an adaptation to extreme environmental conditions. Future investigation shall clarify the potential drivers and consequences of this phenomenon, including how the variation in size affects brain size and reorganization.

Sofia Pedro


FEA, Validity & Sensitivity

fea-validity-smlThe Finite Element Method (FEM) was developed within the framework of Engineering but has become a popular tool in bio-mechanical studies. It is natural that computational bio-mechanics and Finite Element Analysis (FEA) became increasingly promising in fossil studies where there are no examples of some taxa still living. To study the bio-mechanical responses of fossil hominids, modern humans and non-human primates are often used as comparative samples for which there are already known values. Despite this, precisely how accurately computational bio-mechanics compares with physical studies is still not well understood. The biological composition of bone and dentition is hard to replicate in computational terms with the cranium a mixture of trabecular and cortical bone while teeth comprise variable layers of enamel and dentine. The resolution required from Computed Tomography (CT) scans to accurately capture these finer biological compositions is not feasible for the heavy demands on software to analyze such FEA models with flow-effects for the number of specimens that can be included into any single study.

Godinho et al investigated the validity and sensitivity of Finite Element (FE) models using a direct comparison with a human cadaver. Results were particularly affected if the model was simplified by assigning all materials as cortical bone, including dentition and trabecular bone components. Results showed that the real and virtual skull showed no differences in strain magnitude; differences in strain pattern (high or low strain distribution) were only partially different; simplifying the virtual model decreased the strain magnitude; simplifying the virtual model partially affected the strain pattern with the regions near the dentition, particularly the alveolar ridge, most affected.

For bio-mechanical studies, by not simplifying virtual models and attempting to designate dental and bone tissues properly acknowledges the underpinning biology of the cranium while potentially revealing sensitive adaptations of this biological structure. By adopting these changes, new variations between living and fossil humans, that have so-far been obscured by less time-consuming computational methods, could reveal unique adaptational trends that have real significance for human evolution.

Alannah Pearson