Tag Archives: Alzheimer’s disease

Mouse Lemur Brain

The gray mouse lemur (Microcebus murinus) is a small Madagascan primate, averaging 12 cm length and weighing between 60-120 grams. Despite the diminutive size, mouse lemurs are increasingly used in medical studies of Alzheimer’s disease and similar neurological disease processes found in humans. Mouse lemurs often live to 12 years or more in the wild, which combined with torpor (a form of short-term hibernation) may be associated with the longer lifespans. Considering mouse lemurs have prolonged lifespans, it is probably not surprising that they also experience age-related brain atrophy. Nadkarni et al. (2019) address the absence of a dedicated mouse lemur brain atlas through in-vivo MRI scanning 34 mouse lemurs, investigating age-related brain atrophy and the neuroanatomy of Microcebus murinus in a comparative context. Results showed that most of the cerebral cortex was affected with age-related brain atrophy including the primary visual cortex and, although the remainder of the primary sensory areas were unaffected by atrophy, an even higher amount of atrophy was found in the sub-cortical brain regions including the thalamus, hippocampus and amygdala. All previous studies of mouse lemur neuroanatomy have been conducted with histological atlases. However, Nadkarni and colleagues compared mouse lemur cerebral to cortical volumes using high-quality MRI, finding that contrary to histology studies, mouse lemurs had similar cortical to cerebral volume indices to other primate species and were not to be considered a “lesser primate” species as has been previously argued. The proportion of cerebral white matter was the highest in humans, before a continual decrease in macaques and smaller monkeys with the lowest white matter volumes observed in mouse lemurs. The trend for increasing white matter volumes in primates, culminating with the highest values in humans, has often been argued as necessary for reinforcing intra-cerebral connectivity, hypothesized as an important process in primate brain evolution.

Included with this study of mouse lemurs, Nadkarni and colleagues also produced an accompanying MRI in-vivo brain atlas which includes 120 labelled brain structures specific to Microcebus murinus which to-date, has been unavailable. The accessibility of a brain atlas specific for mouse lemurs removes the time-consuming process of manual MRI segmentation, allowing quick and direct comparison of brain regions with other primates for a comparative evolutionary context and in medical research for Alzheimer’s disease.

Alannah Pearson

Advertisements

Cerebellum and Alzheimer

A perspective review on cerebellum and Alzheimer’s disease, coordinated by Heidi Jacobs

Jacobs H.I., Hopkins D.A., Mayrhofer H.C., Bruner E., van Leeuwen F.W., Raaijmakers W., Schmahmann J.D.
The cerebellum in Alzheimer’s disease: evaluating its role in cognitive decline.
Brain, 2017

[link]

(and here a post on cerebellum and paleoneurology …)