Tag Archives: brain proportions

Primate brain volumes

Comparative neurobiology has traditionally been used to describe and quantify the macro-and micro-anatomical changes to the brain between human and non-human primates. Research literature commonly refers to the Stephen dataset with brain volumes measured from a small sample of ex-vivo non-human primate brains with species often represented by only one or two individuals. Although this is common limitation inherent to many physical neuroanatomy collections, caution should be used with such limited samples not representative of a species and the actual variation unknown. The consequences for such assumptions on quantifying the neuroanatomical differences between humans and non-human primates have broader implications for human evolution. Despite the increasing accessibility of primate neuroimaging datasets, many comparative studies still rely on the Stephen brain volumes.  This is despite the necessary factoring of numerous bias including cerebral tissue damage from the delay between the post-mortem interval and brain preservation, potential introduction of artifacts from tissue preservation processes causing shrinkage, some cellular destruction and occasional damage during brain extraction.

Navarette and colleagues recently compared digital neuroanatomical volumes from ex-vivo brain MRI with the Stephen data using the same primate species but including an extra 20 species. Results showed differences between the Stephen data and those obtained by Navarrete et al. with larger brain volumes measured in the pre-fixed state versus post-fixed, indicating fixation did noticeably affect brain volume measurement. Although Navarrete et al. aimed to quantify primate brain volume variation by increasing the number of primate species to 39, there were still 29 species represented by only one individual, while the maximum of for the entire sample was never greater than three individuals per species. Although Navarrete et al. argued a lack of larger in-vivo primate brain neuroimaging datastes, several are accessible as part of the National Chimpanzee Research Center. More broadly, Navarrete and colleagues have shown quantifiable differences between pre- and post-fixed brain volumes and emphasised the need for caution in the suitability of ex-vivo brain collections to provide reliable volumetric measurements for comparative primate neuroanatomy.

Alannah Pearson

Advertisements

Brain partition scaling

A group coordinated by Dr. Vera Weisbecker examined whether the evolution of mammalian brain partitions follows conserved developmental constraints, causing the brain to evolve as an integrated unit in which the partitions scale with brain size. According to this ‘late equals large’ hypothesis, the timing of neurogenesis predicts the size of the partition such that later and more extended neurogenesis produces larger partitions due to the production of more neural precursors. In order to investigate the impact of neurogenesis on patterns of brain partition growth, the volumes of the whole brain and major partitions were reconstructed from soft-tissue diceCT scans of three marsupial species, including individuals with ages ranging from 1 day to adulthood. They tested three hypotheses consistent with a conserved brain partition growth: H1 postulates that partition scaling during development reflects the evolutionary partition scaling, and thus growth patterns should be uniform between species; H2 assumes that a neurogenesis-driven pattern of partition scaling is predictable from adult brain size, i.e. brain partitions scale with brain size; and H3 states that growth with age might differ between species according to brain size and/or neurogenetic events. Regressions of log partition volume against log rest-of-the-brain volume (whole-brain volume minus partition volume) showed significant interspecific differences in slopes and intercepts of most brain partitions, indicating diverse scaling patterns between species, which could not be predicted by adult brain size, as the smallest-brained species had intermediate slope to the other two.  Growth curves of log partition volume against age were similar in all partitions within-species, but differed between species, particularly in growth rates, with the species with intermediate brain size having slower rates than the other two. Differences in growth patterns do not seem to be related to neurogenetic schedule as largest partitions are not especially late in their development and important maturation processes, like eye opening, occur closer to the end of the growth phase. Thus, none of the hypotheses are supported by these results, challenging the conserved neurogenetic schedules behind the evolution of mammal brain partitions. Moreover, the authors found high phylogenetic signal in brain partition scaling, revealing that a large part of the scaling relationship between brain and partition volumes is explained by phylogeny, which is more in agreement with a mosaic evolution of brain partition sizes, stressing its biological meaning and the level of mammalian brain plasticity. However, the intraspecific regular partition growth curves led the authors to contemplate the existence of an early brain partition pattern regulated by regional gene expression, and propose that further studies of brain partition evolution should integrate developmental neuromere expression models, neuron density, and patterns of neuron migration.

 

Sofia Pedro