Tag Archives: Cranial thickness

Cranial vault thickness in South African Australopiths

In a recent paper, Beaudet and colleagues analyze the cranial vault thickness of StW 578, a partial cranium of Australopithecus not yet assigned to a species. The authors explore the utility of cranial vault thickness and of the organization of the diploe and cortical tables as potential diagnostic criteria for hominin species. For that, they also analyze a comparative sample including other South African Late Pliocene-Early Pleistocene fossils, extant humans, and chimpanzee specimens. Fossils include specimens of Australopithecus and Paranthropus recovered from Sterkfontein, Swartkrans, and Makapansgat sites. Based on cranial landmarks, the authors defined homologous parasagittal and coronal sections on the CT scans, preferentially on the right hemisphere, which is better preserved in StW 578. The thickness of the diploe, the thickness of the inner and outer cortical tables, and the total thickness were measured automatically in various points sampled throughout the length of the sections. The proportion of each layer was computed by dividing the thickness by the surface area calculated between two successive points. Specimens that preserved only the left side were used for qualitative comparison. Results emphasize differences between Australopithecus and Paranthropus. The former genus tends to have thicker vaults, with a larger proportion of the diploic layer, while the latter tends to have thinner vaults, with a larger proportion of the inner and outer tables. The distribution of thickness also differs, as StW 578 and other Australopithecus crania from Sterkfontein display disproportionately thicker frontal and posterosuperior parietal regions, while Paranthropus (SK 46) and extant chimpanzees have thickest regions on cranial superstructures (supraorbital and occipital tori). As the authors suggest, thickening of the cranial vault in frontal and parietal regions needs further investigation, as to unveil a possible correlation between bone thickness and brain anatomy. Moreover, as the increase in thickness is associated with an increase in diploe proportions, variation in this layer might indicate physiological (thermoregulation) or biomechanical differences between Australopithecus and Paranthropus. In sum, cranial vault thickness patterns of StW 578 are equivalent to those of other specimens from Sterkfontein (StW 505 and Sts 71). The presence of a Paranthropus-like pattern in two of the three Mangapansgat specimens further indicates the presence of different morphs or species of Australopithecus in this site. This methodology and results provide a fine base for further studies on the taxonomic significance of the cranial vault thickness. The authors suggest beginning by including more Paranthropus specimens, and by evaluating chronological, geographic, and taxonomic variation.

 

Sofia Pedro

Advertisements

Craniovascular morphology

Eisova et al 2016Studying anatomical variability in paleontological and archaeological context is a challenge to look behind (and beyond) the bones. In the case of cranial remains we are able to make inferences not only on bone morphology but also on part of the vascular system. With computed tomography we can observe the diploic channels inside the bone matrix, and the imprints of the middle meningeal vessels on the endocranial surface of the vault. In the parietal bone both networks are particularly developed, most of all in modern humans. This month we have published a new study focusing the size and morphology of these vascular imprints in adult humans, and on their relationship with bone size and thickness. Our aim was to reveal possible influences between vascular and bone morphology. Vessels and bones share morphogenetic processes, and there can be shared functional and structural relationships between angiogenesis and osteogenesis. Shared growth factors can generate a positive correlation between bones and vessels dimensions or, conversely, biomechanical constraints between bone matrix and its embedded soft tissues can generate an inverse relationship between their volumes. We used CT data of human adult crania to measure cranial size, parietal bone thickness, and lumen size of these vascular traces. We provide a metric description of the size variation and size distribution of the diploic channels and meningeal imprints, for different orders of branches. The diploe largely influences the overall thickness of the bone. The upper part of the parietal bone shows the thickest values. The lumen size of the diploic channels and meningeal imprints is very similar, with no patent sexual or hemispheric differences. The correlation analysis did not revealed any clear relationship between vessels size, cranial size, and cranial thickness. Therefore, these results do not support the hypothesis of a reciprocal influence between bone and vascular morphology, which are likely to respond to different factors. Actually, although some vascular changes may be described in extreme cases of cranial deformation, also according to a previous survey on the endocranial vascular pattern in normal variation there is no apparent correspondence between gross cranial form and craniovascular traces.

Stáňa Eisová